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The Atlantic Meridional Overturning Circulation (AMOC) is 
the key circulation system of the Atlantic Ocean, transport-
ing water masses northward at the surface and southward at 

the bottom of the ocean1. The AMOC is the archetypical example 
of potentially multi-stable Earth system components2. Early stud-
ies based on box models3 indicated that the AMOC has two dif-
ferent stable states of operation, corresponding to a strong and a 
weak circulation mode. The AMOC’s bistability and correspond-
ing hysteresis were thereafter confirmed in a hierarchy of models, 
from Earth system models of intermediate complexity (EMICs)4,5 
to comprehensively coupled atmosphere–ocean general circula-
tion models (AOGCMs)6. It should be noted, however, that AMOC 
bistability has not been identified in a considerable number of 
state-of-the-art Earth system models7 (ESMs). It remains debated 
whether this should be interpreted as evidence for a monostable 
AMOC under current climate conditions, or rather as evidence for 
excessive AMOC stability in these models8,9: most comprehensive 
climate models probably underestimate the freshwater export from 
the northern Atlantic Ocean basin and hence suppress the associ-
ated destabilizing feedback6,9–12. Moreover, it has been argued that, 
in comprehensive models, very high spatial resolution is needed to 
obtain a good representation of the AMOC response to freshwa-
ter forcing13. Indeed, AMOC bistability has been revealed in recent 
simulations with a comprehensive model with an Eddy-permitting 
ocean module14.

The strong AMOC state is currently attained, while the weak 
state has arguably been occupied recurringly during previous gla-
cial intervals. Different lines of evidence from palaeoclimate proxy 
records indicate that Northern Hemisphere temperatures have var-
ied abruptly at millennial time scales during previous glacial epi-
sodes, with corresponding changes of the AMOC between its weak 
and strong modes1,15,16. Speleothem and ocean sediment records 
from around the world show that these so-called Dansgaard–
Oeschger (DO) cycles had (mainly because of the associated AMOC 
transitions) substantial impacts on global climate variability17–19.  

Complex interplays between the AMOC and North Atlantic sea-ice 
cover in conjunction with salinity and circulation changes have 
been proposed as physical causes underlying the DO cycles, but 
although the AMOC is widely accepted to play a key role, the exact 
chain of mechanisms is still under debate16,20–22.

In EMICs and AOGCMs, a shift from the strong to the weak 
AMOC mode can be triggered by adding large amounts of fresh-
water to the North Atlantic, effectively reducing salinity there14,23–26. 
Such hosing experiments have been performed with a large number 
of AOGCMs; as noted above, hosing leads to AMOC shutdown in 
only a subset of models. Moreover, those models that exhibit AMOC 
shutdown disagree considerably regarding the exact amount of 
freshwater needed to trigger the shutdown14,25,27,28, indicating that 
the sensitivity of the AMOC varies strongly across different models. 
The response of the AMOC to future CO2 rise and associated warm-
ing has also been studied in different AOGCMs27,29,30. In addition 
to reducing salinity via enhanced meltwater inflow into the North 
Atlantic, thermal expansion due to overall rising global tempera-
tures can also have the effect of decreasing AMOC strength. A col-
lapse of the current AMOC state would have severe impacts on the 
global climate system25,31 and would increase the risk of a cascade of 
further transitions in other major multi-stable components of the 
Earth system, such as the Antarctic ice sheet, tropical monsoon sys-
tems and Amazon rainforest2,31.

Critical transitions between different equilibrium states of nat-
ural systems are preceded by characteristic properties of the fluc-
tuations in the systems’ dynamical behaviour that are referred to as 
critical slowing down32–35. For components of the Earth system that 
exhibit multiple stable equilibrium states2, and in particular for the 
AMOC, indications of critical slowing down can provide key infor-
mation for predicting future abrupt climate transitions, but also for 
climate change projections, climate model evaluation and the iden-
tification of adaptation and mitigation measures in general.

Critical slowing down is typically measured in terms of increas-
ing variance and autocorrelation in time series encoding the 

Observation-based early-warning signals for a 
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The Atlantic Meridional Overturning Circulation (AMOC), a major ocean current system transporting warm surface waters 
toward the northern Atlantic, has been suggested to exhibit two distinct modes of operation. A collapse from the currently 
attained strong to the weak mode would have severe impacts on the global climate system and further multi-stable Earth sys-
tem components. Observations and recently suggested fingerprints of AMOC variability indicate a gradual weakening during 
the last decades, but estimates of the critical transition point remain uncertain. Here, a robust and general early-warning indi-
cator for forthcoming critical transitions is introduced. Significant early-warning signals are found in eight independent AMOC 
indices, based on observational sea-surface temperature and salinity data from across the Atlantic Ocean basin. These results 
reveal spatially consistent empirical evidence that, in the course of the last century, the AMOC may have evolved from rela-
tively stable conditions to a point close to a critical transition.
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dynamics of the system under study33,34,36. These increases thus 
provide early-warning signals (EWS) for an abrupt transition to an 
alternative stable state, caused by a gradual change in the relevant 
control parameter. A potential problem with interpreting variance 
and autocorrelation increases as indicators for critical slowing down 
(and hence with using them as EWS for critical transitions) is that 
such increases can also be caused by increasing variance and auto-
correlation of the external noise that forces the system. An addi-
tional indicator that is not biased in this way is therefore proposed 
here. The loss of stability when approaching a critical transition can 
be directly quantified in terms of the restoring rate37 λ, obtained 
from linearization around a given stable equilibrium state x*. For 
a system state x close to this equilibrium state, the dynamics can 

be approximated as EY
EU

≈ ȉY+ ȅ, where η denotes a stochastic forc-
ing representing high-frequency fluctuations. The restoring rate λ 
can be inferred from a linear regression of dx/dt onto x for a given 
time window, and can thus serve as a measure of temporal stabil-
ity changes. The estimated values of λ are independent of changing 
variance of the noise η, thus yielding an indicator that is not biased 
in the way that the widely used variance indicator is. However, pos-
sible changes in the autocorrelation of the noise term η can still bias 
the value of λ if inferred via linear regression under the assumption 
that η has constant autocorrelation. This regression is therefore per-
formed with a suitable generalized least-squares algorithm under 
the assumption of noise with varying autocorrelation (Methods). 
The resulting estimate of λ is not biased by changing variance and 
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Fig. 1 | Comparison of robustness of different EWS indicators. a, Simulated time series from the non-linear model dx/dt!=!−x3!+!x!−!T!+!η(t),  
with white noise ȅ(U) with standard deviation ȑ = ���, and control parameter T increasing linearly from T!=!−1 to T!=!+1. A critical transition  
occurs at around 7,000 model integration time steps (blue vertical line). A corresponding time series obtained by simulating the model without 
noise forcing, which represents the nonlinear trend that is used to detrend the stochastic time series, is shown in red for comparison. Note that the 
noise in the stochastic case causes the transition to occur earlier than in the deterministic case. b, Simulated time series from the linear model dx/
dt!=!−5x!+!η(t) with autocorrelated noise ȅ, with the standard deviation ȑ  of η rising linearly from 0.2 to 1.0 and the AR(1) coefficient of η rising linearly 
from 0.1 to 0.95. The system does hence not destabilize. Only the statistics of the noise forcing change. c, Variance of the time series shown in a with 
nonlinear trend removed. d, Variance of the time series shown in b. e, Lag-1 autocorrelation (AC1) of the time series shown in a with nonlinear trend 
removed. f, AC1 of the time series shown in b. g, The restoring rate λ of the time series shown in a with nonlinear trend removed, estimated under the 
assumption of Gaussian white noise (black) and assuming autocorrelated noise (red). h, The restoring rate λ of the time series shown in b, estimated 
under the assumption of Gaussian white noise (black) and assuming autocorrelated noise (red). Note that, for the model that undergoes a critical 
transition, all four indicators yield a significant warning (c,e,g). For the linear model with rising variance and AC1 of the noise term, the increases in 
variance, AC1 and the uncorrected λ give spurious EWS and hence false alarms, in contrast to the corrected restoring rate λ. All EWS indicators are 
estimated in sliding windows of size w !=!2,000 time steps. The first and last w /2!=!1,000 time steps are omitted to ensure that each sliding window has 
the same number of data points (Methods). See Supplementary Fig. S1 for corresponding results using the nonlinear model forced with autocorrelated 
noise instead of white noise.

NATURE CLIMATE CHANGE | VOL 11 | AUGUST 2021 | 680–688 | www.nature.com/natureclimatechange 681



ARTICLES NATURE CLIMATE CHANGE

autocorrelation of the noise η (Fig. 1 and Supplementary Fig. S1). 
As for the classical indicators, the formal derivation of λ as an EWS 
requires that the dynamics should not be too far from equilibrium; 
it has been shown, however, that the classical EWS indeed remain 
valid even in the non-equilibrium case of rate-induced transitions38 
(Methods).

The restoring rate λ is negative for stable system states, and 
the point where it reaches zero from below marks the bifurcation 
point, that is, the critical value of the control parameter where the 
abrupt transition will occur (Fig. 1g). This allows one to quantify 
the distance to the critical transition. It can moreover be shown 
that, if the system under study approaches a critical transition, then 
λ evolves inversely proportionally to the sensitivity of the system’s  

equilibrium state to changes in the control parameter T, given by dx*/
dT. Moreover, the variance of the fluctuations around x* increases 
proportionally to ∣dx*/dT∣ if a critical transition is approached35 
(Methods). These relationships between the restoring rate λ, the 
sensitivity dx*/dT and the variance of fluctuations around the stable 
state x* can be used to associate statistical EWS of a critical transi-
tion with the underlying physical mechanisms.

Although not directly transferable to present-day climate condi-
tions, the AMOC bistability during glacial conditions, in combina-
tion with the AMOC bistability in simulations with comprehensive, 
eddy-permitting models, suggests that also the present-day AMOC 
may exhibit a second, substantially weaker circulation mode. In 
particular, the combined evidence makes it plausible that a critical  
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Fig. 2 | Spatial trends and EWS in Atlantic SSTs and salinity. a, Linear SST trends in the Atlantic, estimated from the HadISST dataset54. Coloured 
boxes indicate the regions used to define the different SST-based AMOC indices (Methods and Fig. 3): the subploar gyre region30 (blue) used to define 
SSTSG-GM

30, SSTSG-GM-AMO and SSTSG-NH
45, as well as the North (cyan) and South (magenta) Atlantic regions used to define SSTDIPOLE

11. b, Linear salinity trends 
in the Atlantic Ocean, estimated from averages of the EN4 dataset55 over ocean levels from 300 m to the surface. Coloured boxes indicate the regions 
used to define the different salinity-based AMOC indices (Methods and Fig. 3): the northern North Atlantic region used by Chen and Tung50 (SNN1, black), 
the smaller northern North Atlantic region proposed by Klus et al.42 (SNN2, yellow) and the North (orange) and South (red) Atlantic regions proposed by 
Zhu and Liu46. c, Mean restoring rate λ for the non-linearly detrended SSTs (running mean with window size r!=!50 years), estimated under the assumption 
of autocorrelated noise in sliding windows of size w !=!70 years. d, Same as c but for the non-linearly detrended salinity. e, Linear trend of the restoring rate 
λ for the SSTs. f, Same as e but for the salinity. Stippling in e and f marks regions with significantly increasing trends (P!<!0.05, see Methods for details on 
the statistical test). Corresponding results for the variance and AC1 are shown in Extended Data Figs. 1 and 2.
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transition to the weak mode may occur in response to rising tem-
peratures and North Atlantic freshwater inflow. It is therefore 
justified to search for EWS for AMOC collapse in both model simu-
lations and observations. EWS in terms of rising variance and lag-1 

autocorrelation (AC1) prior to hosing-enforced AMOC transitions 
have been be identified in low-order models39, EMICs37,40 and fully 
coupled AOGCMs41. Recently, a spatial analysis of comprehensive 
model simulations revealed clear EWS prior to an AMOC collapse 
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Fig. 3 | EWS for SST- and salinity-based AMOC indices. a, SST-based AMOC indices (thin) together with 50-year running means (thick). b, Salinity-based 
AMOC indices (thin) together with 50-year running means (thick). c, The restoring rate λ of the detrended SST-based AMOC indices, estimated under 
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under Holocene conditions in the sea-surface temperature (SST) 
and sea-surface salinity of the northern Atlantic42. EWS have also 
been revealed in the decadal frequency bands of ice-core-derived 
proxy time series prior to the abrupt DO events during the last gla-
cial interval43,44, which have been associated with AMOC transitions.

First, detrended SST and salinity time series in the Atlantic Ocean 
are investigated, starting in 1870 and 1900, respectively (Fig. 2). As 
previously reported30,45, the only negative SST trends are found in 
the ‘warming hole’ south of Greenland (Fig. 2a), and similarly, the 
strongest negative salinity trends are found south of Greenland and 
in the Southern Ocean (Fig. 2b). The exceptional negative trends 
in the subpolar gyre region south of Greenland are consistent with 
a slowdown of the AMOC. The restoring rate λ exhibits the overall 
highest values for both the SST and the salinity data in the northern 
Atlantic, around the subpolar gyre region where the negative SST 

and salinity trends are found (Fig. 2c,d). For both SST and salinity 
time series, the linear trends of the restoring rate are strongly posi-
tive in most parts of the northern Atlantic and additionally in the 
southern Atlantic Ocean, where a salinity pile-up has recently been 
observed46 (Fig. 2e,f). These results for the restoring rate λ are con-
sistent with the other two EWS indicators (Extended Data Figs. 1 
and 2). Although these results do not allow direct inference regard-
ing the AMOC, they give a first indication that the Atlantic Ocean 
circulation system may be losing stability. A detailed analysis of 
observational, SST- and salinity-based AMOC indices is presented 
in the following.

Direct observations of AMOC strength are only available for 
the last two decades47. Although a negative trend can be inferred 
from these observations, their temporal coverage is not yet suffi-
cient to infer a climatological AMOC weakening and a contribution 
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by anthropogenic climate change, as opposed to natural decadal 
fluctuations. Therefore, several fingerprints of AMOC variability, 
based on different spatial averages of SST and salinity time series 
that are available for longer periods, have been proposed and 
investigated11,48–51. Recent cooling anomalies of SSTs in the subpo-
lar gyre region south of Greenland (Fig. 2a) have been associated 
with a weakening AMOC during the last decades45. By comparing 
observed SST anomaly patterns in the subpolar gyre region with 
shorter-term observations of AMOC strength and simulations from 
a suite of models from the Coupled Model Intercomparison Project 
(CMIP), and showing that decreases in the SST-derived indices are 
consistent with the reductions of AMOC strength in the models, 
fingerprints of a weakening AMOC over the last 150 years have 
been inferred30.

Four SST-based and four salinity-based AMOC indices are 
considered here. The indices SSTSG-GM

30, SSTSG-GM-AMO, which is 
based on the same spatial regions but with the linear contribu-
tion of the Atlantic Multidecadal Oscillation (AMO) removed, 
as well as SSTSG-NH

45 focus on the subpolar gyre region south of 
Greenland, while the index SSTDIPOLE is constructed by subtract-
ing South-Atlantic from North-Atlantic SSTs11. These indices have 
been shown to correlate highly with actual AMOC strength in 
simulations with freshwater hosing and gradual CO2 increase, using 
the high-resolution, eddy-permitting HadGEM3-GC2 model51. 
Following Zhang48 and Chen and Tung50, a salinity-based AMOC 
index is constructed by averaging the salinity concentration over 
the North Atlantic. In addition, a smaller subset of this region 
south of Greenland is considered for a second salinity-based index 
SNN2 because EWS for AMOC collapse have been identified there 
recently in model simulations42. Motivated by a recently revealed 
salinity pile-up46, a third and a fourth salinity-based index is con-
structed by averaging the salinity concentration in the North and 
South Atlantic basin, respectively (Methods and Figs. 2 and 3).

Almost all the non-linearly detrended SST- and salinity-based 
AMOC indices (Fig. 3a,b) show highly significant increases in the 
three considered EWS indicators (P < 0.05, except for the AC1 
of SSTSG-GM-AMO; Fig. 3c–h), providing evidence that the AMOC 
is approaching a bifurcation-induced transition. Statistical sig-
nificance of positive trends is determined from a test based on 
phase surrogates that preserve both variance and autocorrelation 
(Methods), and the results are not sensitive to changing the size of 
the sliding windows (Extended Data Figs. 3 and 4). The possibility 
of false alarms due to rising variance or AC1 of the high-frequency 
forcing can be ruled out since the corrected restoring rate λ has been 
considered here.

To put these results into closer context with the underlying 
bifurcation mechanism, the fluctuations obtained by subtracting 
the observed AMOC indices from a modelled equilibrium state of 
the AMOC are investigated. A simple model capturing the bistable 
dynamics of the AMOC is given by a non-linear differential equa-
tion model with two different stable equilibrium states and an 
unstable state in between52 (Methods). AMOC variability and in 
particular its bifurcation structure in comprehensive models have 
been shown to be in good agreement with such simplified descrip-
tions5,26,53. The conceptual models imply a third-order dependence 
of the fixed point x* on the control parameter T, for which the global 
mean SSTs are used. Assuming linearly rising global mean SSTs, this 
also implies a third-order dependence of x* on time. To ensure that 
the EWS indicators are not biased by the statistical detrending per-
formed for the results shown in Figs. 2 and 3, a third-order model 
for the fixed point x* is hence fitted to the different AMOC indices 
(Fig. 4 and Extended Data Fig. 5), and the fluctuations around this 
fixed point are investigated. The restoring rate λ increases signifi-
cantly for almost all the AMOC indices (P < 0.05, except for the 
AC1 of SSTSG-GM-AMO and SS). As expected for a system approaching 
a bifurcation-induced transition, the time evolution of the restoring 

rate λ is strongly correlated with the inverse of the estimated model 
sensitivity dx*/dt, which provides strong evidence that the AMOC is 
indeed approaching a critical, bifurcation-induced transition. EWS 
in terms of rising variance and AC1 are also found for the eight dif-
ferent AMOC indices (Fig. 4 and Extended Data Fig. 5).

One may argue that the control parameter T, given by the global 
mean SSTs, does not increase strictly linearly in time. Therefore, to 
further confirm the above results, the different AMOC indices are 
investigated directly as functions of the global mean SSTs (Fig. 5a 
and Extended Data Fig. 6). The variance of fluctuations around the 
fixed point increases as a function of the global mean SSTs, in close 
relationship with the absolute value of the model sensitivity ∣dx*/dT∣ 
(Fig. 5b) as expected for a destabilizing AMOC on the way to a criti-
cal transition (Methods). These results are robust across the eight 
different AMOC indices (Extended Data Fig. 6). Note that the fact 
that the theoretically expected relationships between variance and λ 
on the one hand, and the sensitivity dx*/dT on the other hand, hold 
true for the empirical AMOC indices indicates that the dynamics is 
indeed not too far from equilibrium.

Using three different indicators, highly significant EWS for 
an abrupt AMOC transition in four SST- and four salinity-based 
AMOC indices, covering the time spans from 1870 to 2019 and 
1900 to 2019, respectively, are thus revealed. The restoring rate λ 
has evolved almost linearly from values close to −1 to values close to 
0 over the course of the last century. Since λ = 0 marks the bifurca-
tion point at which the critical transition is expected to occur, these 
results provide empirical evidence that the AMOC is now close to 
a critical transition. The fact that significant increases of the cor-
rected restoring rate λ proposed here are obtained rules out that the 
revealed EWS are caused by corresponding changes in the exter-
nal noise forcing. In addition to the robustness in terms of different 
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AMOC indices, the presented results are also robust against differ-
ent detrending and detection methods (Figs. 3–5), the choice of the 
sliding window size (Extended Data Figs. 3, 4, 7 and 8) and the SST 
dataset employed (Extended Data Fig. 9) (Methods).

Corresponding EWS in terms of the restoring rate λ are found in 
only a subset of the historical simulations of the CMIP5 models. For 
the modelled AMOC strength, quantified as the maximum strength 
over all ocean depth at 26° N, 6 out of 15 models yield simulations 

with significant (P < 0.05) increases of λ in the period 1870–2018 
(Fig. 6a). For the modelled SST-based AMOC index, derived in the 
same way as the observed one by subtracting subpolar gyre SSTs 
from the global mean30, significantly (P < 0.05) increasing λ are 
only found in 3 out of the 15 investigated models (Fig. 6b). None 
of the models exhibit significantly increasing λ for both the mod-
elled AMOC strength and the modelled SST-based index. Notably, 
from the three models with highest correlations between modelled 
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AMOC strength and modelled SST-based AMOC index, as well as 
highest correlations between the modelled SST-based index and the 
observed SST-based index, only one (GFDL-ESM2M) exhibits sig-
nificant increases of the restoring rate λ for the modelled SST-based 
AMOC index (Fig. 6c). Similar results are obtained when consider-
ing the maximum modelled AMOC strength over all ocean depths 
from 20° N to 60° N (Extended Data Fig. 10). At a confidence level 
of 0.05, one would expect to obtain an apparently significant posi-
tive trend in only 1 out of 20 test realizations by chance, if there were 
in fact no underlying trend. Although higher numbers of significant 
EWS are obtained for the CMIP models, these findings still raise 
concern regarding whether state-of-the-art climate models would 
be skilful in predicting a forthcoming AMOC collapse. This is in 
agreement with previous results showing that the present AMOC 
mode is too stable in state-of-the-art models9, most likely due to an 
underestimation of the freshwater export from the northern Atlantic 
Ocean, caused by errors in the salinity fields and insufficient model 
resolution12. The high-resolution, eddy-permitting HadGEM3-GC2 
model, which was used to establish the suitability of the SST-based 
AMOC indices employed here51, constitutes a major step forward 
concerning a more accurate representation of the AMOC and its 
stability12,14. A continuous evaluation of new model versions in 
terms of AMOC indices and their EWS will be subject to future 
research. In particular, for models with excessively stable AMOC, 
one would not expect to observe EWS, and the results presented 
here could therefore be used to identify observational constraints 
for climate models.

In simulations with a coupled AOGCM with hosing-enforced 
AMOC collapse, EWS in terms of rising variance and AC1 have 
been revealed41. The evolution of the AC1 prior to AMOC collapse 
in the simulations of the latter study (see fig. 4c there) is very similar 
to the evolution of the AC1 of the observation-based indices inves-
tigated here (Figs. 3g,h and 4c and Extended Data Figs. 3g,h, 4g,h, 
5g,h, 7g,h and 8g,h). The EWS revealed here for observation-based 
AMOC indices thus behave exactly like corresponding signals in 
comprehensive model simulations prior to an AMOC collapse. Note 
that, in the model hosing experiment41, the AMOC collapses even 
before the AC1 reaches the critical value AC1c = 1 (corresponding to 
λc = 0; Methods) because the fluctuations push the AMOC out of the 
weakly stable state already before it ceases to exist. Similar observa-
tions have been made also in more recent hosing experiments53.

The results presented here hence show that the recently discov-
ered AMOC decline during the last decades is not just a fluctuation 
related to low-frequency climate variability or a linear response to 
increasing temperatures. Rather, the presented findings suggest that 
this decline may be associated with an almost complete loss of sta-
bility of the AMOC over the course of the last century, and that the 
AMOC could be close to a critical transition to its weak circulation 
mode.
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Methods
Derivation of SST- and salinity-based AMOC indices. SST-based indices. 
Following Rahmstorf et al.45 and Caesar et al.30, the set of SST grid cells in the 
North Atlantic is used that exhibits relative cooling when normalized to the global 
mean SST trend in either the HadISST reanalysis data54 or the simulations of a CO2 
doubling experiment of the GFDL CM2.6 climate model (blue contour in Fig. 2a; 
note that the presented results are not sensitive to small variations of this region). 
Thereafter, the average over this subpolar gyre region for each November–May 
season is taken, and the global mean SSTs is subtracted to obtain the AMOC index 
SSTSG-GM as proposed by Caesar et al.30. Since the decadal variability of this AMOC 
index is closely related to the AMO, a simple linear regression of the AMOC index 
onto the AMO is performed, and the residual is taken as a modified AMOC index 
SSTSG-GM-AMO for comparison. For the latter case, the AMO index is computed 
following Trenberth et al.56 as the difference between mean North Atlantic (0–80° 
N) SSTs and global mean SSTs, normalized by the mean difference for the time 
period 1900–1970. For the third SST-based index SSTSG-NH, the mean subpolar gyre 
SSTs are taken, and the Northern-Hemisphere mean is subtracted, as originally 
proposed by Rahmstorf et al.45. Finally, the index SSTDIPOLE, originally proposed 
by Roberts et al.11, is constructed by subtracting SSTs in the South Atlantic region 
defined by 0–45° S, 70° W to 30° E from SSTs in the North Atlantic region defined 
by 45–80° N, 70° W to 30° E. The three indices SSTSG-GM, SSTSG-GM-AMO and SSTDIPOLE 
have been shown to correlate highly with the actual AMOC strength in simulations 
of the high-resolution, eddy-permitting coupled climate model HadGEM3-GC2 
(ref. 51).

Salinity-based indices. Following Zhang48 and Chen and Tung50, the salinity-based 
AMOC index SNN1 is constructed by averaging the salinity content of the Atlantic 
Ocean basin from 45° N to 65° N using the EN4 dataset55. Also, a smaller subset 
of the northern North Atlantic region (54–62° N, 26–62° W) is taken for a second 
salinity-based index SNN2, because EWS for an AMOC collapse have been identified 
in this region in model simulations recently42. Motivated by the results of Zhu and 
Liu46, the salinity concentration in the North Atlantic basin from 10° N to 40° N is 
averaged to obtain the index SN. Finally, a salinity pile-up in the South Atlantic has 
recently been revealed and associated with the slowing of the AMOC over recent 
decades46. Accordingly, a South Atlantic AMOC index is considered by averaging 
salinity over the Atlantic basin from 10° S to 34° S (SS) (Figs. 2b and 3b). All salinity 
indices are obtained by averaging over ocean levels from 300 m to the surface and 
multiplying by −1 (ref. 46).

Robust precursor signals for critical transitions. Early-warning signals. Consider 
a random non-linear dynamical system described by the following equation of 
motion:
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= −6

′(Y�5) + ȅ(U) 


where x denotes the time-dependent state variable of the system and U a potential 
that exhibits two minima (that is, stable equilibria or fixed points) for intermediate 
values of the control parameter T, but only one minimum for p outside a given 
range. For example, for 6(Y�5) = Y
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only one minimum for T outside this range. The minima of U, corresponding to 
the possible stable equilibria of the system (where dx/dt = 0), are also called stable 
equilibrium or fixed points, while the relative maximum between the two minima 
(where also dx/dt = 0) is referred to as an unstable equilibrium or fixed point. The 
critical values of T at which the number of stable equilibrium points changes are 
the bifurcation points. The above system is driven by an external random forcing η, 
whose variance and autocorrelation may change over time.

The loss of stability of an equilibrium state of a non-linear dynamical system 
(that is, one of the minima of U in the example above) is associated with a 
widening of the corresponding potential well. At the bifurcation, the stable fixed 
point and the associated potential well eventually cease to exist, causing the system 
to transition rapidly to an alternative stable state. The widening of the potential 
well leads to weaker restoring forces (observe 6′ in the equation above) in  
response to external (random) perturbations given by η, and correspondingly 
slower recovery times. These characteristics give rise to the notion of ‘critical 
slowing down’. In such idealized systems, this critical slowing down is  
accompanied by increases in variance (because of weaker restoring forces in 
response to perturbations) and autocorrelation (because of slower recovery times 
from perturbed states) of the time series encoding the dynamics of x.  
These statistical EWS preceding abrupt transitions have been discovered in many 
natural systems32,33,57.

It may happen, however, that the variance and autocorrelation of η increase due 
to external reasons unrelated to critical slowing down, which would in turn cause 
increasing variance and autocorrelation in the time series of x, leading to a false 
alarm of a forthcoming transition (Fig. 1, right column). A different indicator for 
destabilization and the associated critical slowing down is therefore proposed here. 
For x in the vicinity of a stable fixed point x*, the potential U can be approximated 

by a quadratic function, leading to the following approximate equation of motion 
for the fluctuations around the stable fixed point (Δx = x − x*):

EɔY

EU

≈ ȉɔY + ȅ(U) 


where λ < 0 if the fixed point is stable. For white noise η with constant variance, 
this defines an additive Ornstein–Uhlenbeck process with restoring rate λ, which 
corresponds to the steepness of the corresponding quadratic approximation of the 
potential around the fixed point. The value of λ thus directly quantifies the stability 
of the system37. Similar observations have been made in discrete settings in the 
context of epidemic outbreaks58. Within a given time window, the derivative dx/
dt can be estimated from the time series of x, and linearly regressing dx/dt onto 
x yields a direct estimate of the restoring rate λ. As long as η is white, Gaussian 
noise, the estimate of λ is not biased by changing variance of η. However, if η is 
given by red noise with autocorrelation changing over time (which is indeed a 
very realistic assumption for the case of climate variability), a linear regression of 
dx/dt onto x, using a least-squares algorithm assuming white noise, will lead to 
biases in the estimation of λ (Fig. 1, right column). The regression of dx/dt onto x 
is therefore performed under the assumption of autocorrelated residual noise with 
the autoregression coefficient as a free parameter. Using this estimation for λ yields 
an indicator that is not sensitive to increasing variance or autocorrelation of η (Fig. 
1, right column) but provides a robust warning if the system is indeed approaching 
a critical, bifurcation-induced transition (Fig. 1, left column).

The discretization of the Ornstein–Uhlenbeck process (with time step Δt 
equal to 1 year for the case at hand) gives an order-one autoregressive process with 
variance
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With λ < 0 approaching zero from below on the way to the critical transition, the 
variance will thus diverge to +∞ and the AC1 (that is, α1) will increase toward 1, 
which explains why these statistical indicators can serve to detect critical slowing 
down under the assumption that the statistical properties of η remain constant. 
Note that these relationships of 〈Δx2〉 and αn with λ are the theoretical motivation 
for using variance and AC1 as EWS; the restoring rate λ should thus be preferred 
because it yields a more direct, and unbiased, estimate of critical slowing down and 
destabilization.

Note that the above formal derivation of the EWS indicators 〈Δx2〉, αn and λ 
relies on the assumption that the dynamics is close to the equilibrium, and hence 
that the linearized dynamics of the fluctuations around the equilibrium can be 
considered. However, it has been shown that, even in the extreme non-equilibrium 
case of so-called rate-induced transitions, EWS in terms of delayed rising variance 
and autocorrelation arise38.

Sensitivity. Consider a general equation of motion of the form

EY

EU

= G(Y) − 5 + ȅ(U)

with a non-linear function f (which is given by f(x) = −x3 + x in the above example 
of a double-well system) and control parameter T. Linearization around a fixed 
point x* yields for the fluctuations Δx = x − x*

EɔY

EU

= G

′(Y∗)ɔY + ȅ(U)

and hence, comparing with the above, ȉ = G

′(Y∗). On the other hand, since by 
definition dx/dt = 0 at x = x* and thus f(x*) = T, for the sensitivity it holds that

EY

∗

E5

=
�

G

′(Y∗)
�

Therefore, if a non-linear system of the above form is approaching a bifurcation, it 
should be theoretically expected that

ȉ ∝

(

EY

∗

E5

)

−�

as observed in Fig. 4b and Extended Data Fig. 9 (assuming an approximately linear 
relationship between time t and the control parameter T). Moreover, since for the 
locally linearized and discretized system the variance is approximately proportional 
to σ2/(−2λ) (recall that λ < 0 and in the given case Δt = 1), for the fluctuations 
around x* it holds that35
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Very similar results for the SST-based index, in terms of significant indicators 
for an ongoing destabilization of the AMOC, are obtained when using the ERSST61 
instead of HadISST dataset (Extended Data Fig. 9).

Data availability
The HadISST reanalysis data used here are publicly available at https://www.metoffice.
gov.uk/hadobs/hadisst/. The CMIP5 data are publicly available at https://esgf-node.
llnl.gov/projects/cmip5/. The grid cells used to define the subpolar gyre region can be 
downloaded from http://www.pik-potsdam.de/~caesar/AMOC_slowdown/. Ocean 
salinity data can be obtained from https://www.metoffice.gov.uk/hadobs/en4/.

Code availability
All Python code used for the analysis is available from the author upon request 
(boers@pik-potsdam.de) or on GitHub at https://github.com/niklasboers/
AMOC_EWS.
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as observed in Fig. 4c. The consistency of the behaviour of the restoring rate λ and 
the variance 〈Δx2〉 with the behaviour of the sensitivity dx*/dT provides strong 
evidence of a forthcoming critical transition because the above relationships would 
not hold without a destabilization of the system.

Testing statistical significance of increasing trends. A widely used test to  
assess the statistical significance of trends is the Mann–Kendall test. This test, 
however, assumes identically and independently distributed data points. Given  
that precursor signals for critical transitions (such as variance, AC1 or the restoring 
rate λ proposed here) are estimated via sliding windows across the time series 
under study, serial correlations have to be accounted for and the Mann–Kendall 
test is not applicable. A different significance test, based on surrogates that 
preserve both the variance and the autocorrelation function of the original time 
series32,43,44,59, is therefore employed here. These surrogates are constructed by 
first computing the Fourier transform of the underlying time series, and then 
randomizing the phases. Statistical significance of trends is then estimated from the 
statistics of linear trends obtained from 100,000 such surrogates. The significance 
of the increasing trends of the EWS indicators is therefore tested, rather than the 
significance of their individual values60. The minimum number of data points to 
infer statistically significant EWS depends strongly on the specific statistical test, 
but of course also on the strength of the signal and the specific dynamics in each 
individual case.

Conceptual AMOC model. Conceptual models of the AMOC commonly 
exhibit two stable states3,52, and effectively, the dynamics can be described by a 
fourth-order potential with two minima, as introduced above. The corresponding 
bifurcation diagrams, which depict the stable fixed points as functions of the 
control parameter T, exhibit a stable branch corresponding to the strong AMOC 
mode. This branch can be approximated by a third-order function of the form 
G(Y) = Q

�

+ (−Q

�

(Y − Q

�

))��� for arbitrary p0 and positive p1 and p2. To obtain 
the best-suited fixed-point curve as a function of the control parameter T (under 
the assumption that the dynamics is not too far from equilibrium) an ordinary 
least-squares fit of the function f to the eight different AMOC indices is performed 
(Fig. 5a (red) and Extended Data Figs. 5, 7 and 8). The fluctuations of the AMOC 
indices around their fixed points are then computed, and EWS are searched for in 
these fluctuations. Note that, for the results shown in Fig. 4, a linear relationship 
between time and the control parameter T has been assumed.

Sensitivity of results. To rule out the possibility that the significant indicators for 
a destabilization of the AMOC are caused by changes in the decadal frequency 
variability of the AMO, a version of the SST-based AMOC index introduced in 
ref. 30 is considered, for which AMO variability is removed via linear regression 
(SSTSG-GM-AMO). See the derivation of the different indices above.

The presented results are insensitive to the specific method used for detrending 
the underlying AMOC indices. Figure 3 and Extended Data Figs. 3 and 4 show 
results for non-linearly detrended time series using a running mean filter with size 
r = 50 years, while Fig. 4 and Extended Data Fig. 5 show results for non-linearly 
detrended time series using the best estimate of the fixed point of a simplified 
AMOC model. Moreover, investigating the EWS directly as functions of the control 
parameter T, rather than as functions of time, yields equivalent results (compare 
Fig. 4 with Fig. 5).

The choice of the window size used to estimate changes in the EWS indicators 
variance, AC1 and restoring rate λ is determined by a trade-off between having 
sufficient data points in each window to estimate the different indicators reliably 
and having sufficient data points in total, obtained from each window, to estimate 
trends reliably. In the main text, results using a window size w = 70 years are 
shown. These remain very similar when using window sizes ranging from w = 60 
years to w = 80 years (Extended Data Figs. 3 and 4 or 7 and 8).
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Extended Data Fig. 1 | Mean early-warning indicators for the Atlantic ocean. a, Corrected restoring rate λ estimated from the HadISST dataset assuming 
autocorrelated noise. b, Same as (a) but for the EN4 salinity dataset. c, Variance estimated from the HadISST dataset. d, Same as (c) but for the EN4 
salinity dataset. e, AC1 estimated from the HadISST dataset. f, Same as (e) but for the EN4 salinity dataset. Note the high values in the northern Atlantic 
and the subpolar gyre region in particular for λ and AC1.
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Extended Data Fig. 2 | Trends of early-warning indicators for the Atlantic ocean. a, Linear trends of the corrected restoring rate λ estimated from the 
HadISST dataset assuming autocorrelated noise. b, Same as (a) but for the EN4 salinity dataset. c, Linear trends of the variance estimated from the 
HadISST dataset. d, Same as (c) but for the EN4 salinity dataset. e, Linear trends of the AC1 estimated from the HadISST dataset. f, Same as (e) but for the 
EN4 salinity dataset. Note the high positive values in the northern Atlantic and the subpolar gyre region in particular for λ and AC1, but also in the southern 
Atlantic ocean where a salinity pileup has recently been associated with an AMOC slowdown [46].
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Extended Data Fig. 3 | Same as Fig. 3, but with sliding window size w"="60 yr to estimate EWS. a, SST-based AMOC indices (thin) together with 
50-yr running means (thick). b, Salinity-based AMOC indices (thin) together with 50-yr running means (thick). c, The restoring rate λ of the SST-based 
AMOC indices, estimated under the assumption of autocorrelated noise. d, The restoring rate λ of the salinity-based AMOC indices, estimated under the 
assumption of autocorrelated noise. e, Same as (c) but for the variance. f, Same as (d) but for the variance. g, Same as (c) but for the AC1. h, Same as (d) 
but for the AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with p-values given in the legends. Values for each sliding 
window are plotted at the centre point of that window. Data for the first and the last w /2!=!30 yr are omitted because no full time windows to estimate the 
different early-warning indicators are available there.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange



ARTICLES NATURE CLIMATE CHANGE

Extended Data Fig. 4 | Same as Fig. 3, but with sliding window size w"="80 yr to estimate EWS. a, SST-based AMOC indices (thin) together with 
50-yr running means (thick). b, Salinity-based AMOC indices (thin) together with 50-yr running means (thick). c, The restoring rate λ of the SST-based 
AMOC indices, estimated under the assumption of autocorrelated noise. d, The restoring rate λ of the salinity-based AMOC indices, estimated under the 
assumption of autocorrelated noise. e, Same as (c) but for the variance. f, Same as (d) but for the variance. g, Same as (c) but for the AC1. h, Same as (d) 
but for the AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with p-values given in the legends. Values for each sliding 
window are plotted at the centre point of that window. Data for the first and the last w /2!=!40 yr are omitted because no full time windows to estimate the 
different early-warning indicators are available there.
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Extended Data Fig. 5 | Same as Fig. 4 in the main text, but for the remaining six AMOC indices as indicated in the legends. a, SST-based AMOC indices 
and fitted fixed point of a conceptual AMOC model. b, Salinity-based AMOC indices and fitted fixed point of a conceptual AMOC model. b,c, The restoring 
rate λ of the SST-based AMOC indices, estimated under the assumption of autocorrelated noise. d, The restoring rate λ of the salinity-based AMOC 
indices, estimated under the assumption of autocorrelated noise. e, Same as (c) but for the variance. f, Same as (d) but for the variance. g, Same as (c) 
but for the AC1. h, Same as (d) but for the AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with p-values given in the 
legends. Values for each sliding window are plotted at the centre point of that window. Data for the first and the last w /2!=!35 yr are omitted because no 
full time windows to estimate the different early-warning indicators are available there.
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Extended Data Fig. 6 | Same as Fig. 5 in the main text, but for all eight AMOC indices SSTSG−GM (a), SSTSG−GM−AMO (c), SSTDIPOOLE (e), SSTSG−NH (g), SNN1 
(b), SNN2 (d), SN (f), and SS (h) as indicated in the legends. In each panel, the respective AMOC index (top) and the corresponding variance (bottom) are 
shown as functions of the control parameter T.
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Extended Data Fig. 7 | Same as Extended Data Fig. 5, but with sliding window size w"="60 yr to estimate EWS. a, SST-based AMOC indices and fitted 
fixed point of a conceptual AMOC model. b, Salinity-based AMOC indices and fitted fixed point of a conceptual AMOC model. b,c, The restoring rate λ 
of the SST-based AMOC indices, estimated under the assumption of autocorrelated noise. d, The restoring rate λ of the salinity-based AMOC indices, 
estimated under the assumption of autocorrelated noise. e, Same as (c) but for the variance. f, Same as (d) but for the variance. g, Same as (c) but for the 
AC1. h, Same as (d) but for the AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with p-values given in the legends. 
Values for each sliding window are plotted at the centre point of that window. Data for the first and the last w /2!=!30 yr are omitted because no full time 
windows to estimate the different early-warning indicators are available there.
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Extended Data Fig. 8 | Same as Extended Data Fig. 5, but with sliding window size w"="80 yr to estimate EWS. a, SST-based AMOC indices and fitted 
fixed point of a conceptual AMOC model. b, Salinity-based AMOC indices and fitted fixed point of a conceptual AMOC model. b,c, The restoring rate λ 
of the SST-based AMOC indices, estimated under the assumption of autocorrelated noise. d, The restoring rate λ of the salinity-based AMOC indices, 
estimated under the assumption of autocorrelated noise. e, Same as (c) but for the variance. f, Same as (d) but for the variance. g, Same as (c) but for the 
AC1. h, Same as (d) but for the AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with p-values given in the legends. 
Values for each sliding window are plotted at the centre point of that window. Data for the first and the last w /2!=!40 yr are omitted because no full time 
windows to estimate the different early-warning indicators are available there.
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Extended Data Fig. 9 | Early-warning signals for the SST-based AMOC index SSTSG−GM. Same as Fig. 4, but using the ERSST instead of the HadISST 
dataset.
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Extended Data Fig. 10 | AMOC strength and SST-based index in CMIP5 models. Same as Fig. 6, but for the modelled maximum AMOC strength over all 
ocean depths from 20∘N to 60∘N, instead of at 26∘N.
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